

Lithium Ion Battery Applications & Safety in Transportation

April 2013

Tesla Fleet Statistics

Roadster

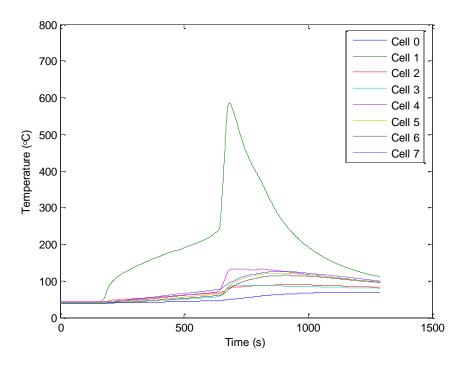
- Production began in 2008
- 55 kWh/245 mile range
- Approximately 2,500 vehicles
- More than 15 million cells
- More than 30 million miles driven
- More than 40 million cell years

Model S

- Production began in 2012
- 60 or 85 kWh/ up to 265 mile range
- More than 7,000 delivered vehicles
- More than 50 million cells
- More than 12 million miles driven
- More than 10 million cell years

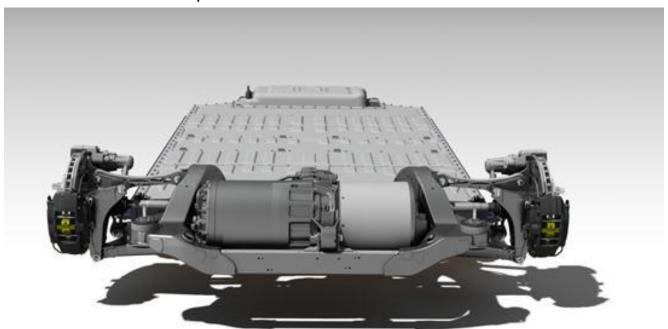
- Cell, module, pack, charger, drive unit, and vehicle designs are not decoupled: they are intimately linked
 - Detailed understanding of cell performance, degradation, and failure under a full range of possible thermal, mechanical, and electrical use and abuse conditions
 - Cycle cells
 - Customized individual cell abuse tests related to module and pack design
 - Cell destructive examination
 - Close working relationship with cell supplier
 - Customized tests of modules
 - Customized tests of packs
 - Tesla tightly controls every component that interacts with the battery pack electrically, mechanically, thermally

- Purchase the highest quality cells, but assume that some will be flawed
 - Mature mass production processes
 - Mature mass production quality control
 - 100,000's cells from multiple production lots used for validation of products
 - Conduct 100% inspection on cells prior to module assembly
 - Detect cells with micro-shorts
 - Use flawed cells to drive cell manufacturing improvements: Tesla and cell manufacturer examine flawed cells
 - Examine any weak cells identified during testing of prototype modules or packs



- Assume that some proportion of cells will undergo a thermal runaway reaction for unknown reasons (manufacturing defect, handling damage, etc.)
 - Design battery pack to be robust to single cell thermal runaway (passive propagation resistance)
 - Tesla tests included in SAE J2464
 - 100% SOC, soak at max vehicle temp spec
 - Small cell approach facilitates control over thermal runaway propagation
 - Liquid cooling in contact with every cell

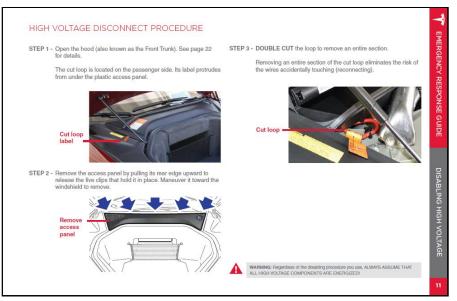
SURFACE VEHICLE	SAE J2464 NOV2009
SAE International RECOMMENDED	Issued 1999-03 Revised 2009-11
PRACTICE	Revised 2009-11
	Superseding J2464 MAR1999
(R) Electric and Hybrid Electric Vehicle Rechargeable Energy Storage System (RESS) Safety and Abuse Testing	


Passive Propagation Resistance Test (Module or Pack Level)

This test evaluates the ability of a DUT to withstand a single cell thermal runaway event so that a thermal runaway event does not propagate to adjacent cells. It is recommended that the DUT manufacturer first perform these tests at the module level.

- Assume that flaws can occur during module and pack assembly processes
 - 100% testing of modules to detect poor cell interconnects, high self discharge rate cells, etc.
 - 100% testing of packs to detect module assembly flaws
 - Design protection electronics to detect a range of potential problems that could develop over time:
 - Cells that develop high self discharge rates
 - Failure of interconnects
 - Failure of other components

- Assume that customers will want to charge the car at a wide variety of locations
 - 120 V residential outlets
 - 240 V residential outlets
 - High rate home or business charging adaptors
 - Public charging stations
 - Supercharging stations
- Integrate the charger into the vehicle
- Design the drive unit to properly discharge or charge the battery (regenerative braking)



- Design pack to be electrically robust
 - Cells are designed with mechanisms to prevent
 - Overcharge,
 - Overheating during short circuit
 - Internal short circuits
 - Multiple, redundant firmware & hardware layers to protect cells, modules, and pack from electrical abuse
 - Overcharge
 - Short circuit
 - Over-discharge
 - Extensive sensing to detect fault conditions
 - **Temperature**
 - Acceleration
 - Humidity
 - Battery pack disconnects to isolate battery pack and prevent charging or discharging if a fault occurs
 - Internal pack problem
 - Collision detected
 - 12V battery disconnected or cut by 1st responders

Tesla Battery Pack Design Approach

- Design and extensively test packs to be mechanically & thermally robust
 - Design & test cells, modules, and packs to withstand long-term vibration
 - Battery Vibration Test / SAEJ2380
 - Corresponds to approximately 160,000 km of usage at the 90th percentile.
 - 38 hours of vibration comprised of 3 axes (UL 1642 is 4.5 hours total and 2 axes for 18650s)
 - Protect cells from mechanical damage due to collisions or other impacts
 - SAE J2464 crush on modules
 - Crash impact simulation on modules
 - Vehicle crash tests
 - Design and test for robustness to elevated temperature exposure
 - Design and test to resist water intrusion
 - Spray
 - Immersion
 - High humidity / high temperature
 - Design and test to resist chemical exposure
 - Salt fog
 - Corrosive gases (pollution)
 - Common automotive fluids

www.wreckedexotics.com

- Tesla supports training of 1st and 2nd responders
 - Publishes 1st Responder Guides
 - Publishes Towing Guides
 - Partners with NFPA, Fire Departments and Training Providers
 - EV Safety / Extrication video
- Tesla supports development of standard tests to characterize behavior under severe abuse conditions
 - SAE J2464 " to determine the response [of electric or hybrid electric vehicle Rechargeable Energy Storage Systems] to conditions or events which are beyond their normal operating range"
 - UL2580 Section 30: External Fire
 Exposure Test "to determine an
 electrical storage assembly's ability to
 prevent an explosion as a result of
 exposure to a simulated fuel or vehicle
 fire external to the energy storage
 assembly"

